

1. INTRODUCTION 2

2. THE PXGF CHUNK STRUCTURE 2

 Fig. A Structure of PXGF chunks 2

3. APPLICATION NOTES 3

 Fig. B Example chunk usage in a PXGF stream 3

4. DEFINITION OF CHUNKS 5

 4.1 Single channel Short IQ time data - SSIQ chunk 5

 4.2 Singel channel IQ Packing - SIQP chunk 5

 4.3 Sample Rate - SR__ chunk 5
 4.4 BandWidth - BW__ chunk 6
 4.5 BandWidth Offset Frequency - BWOF chunk 6
 4.6 Centre Frequency - CF__ chunk 6
 4.7 dB Full Scale - dBFS chunk 6
 4.8 dBTotal Gain - dBTG chunk 7

 4.9 IQ DisContinuity - IQDC chunk 7
 4.10 Single channel Short Real data - SSR_ chunk 7
 4.11 Group Short IQ time data - GSIQ chunk 8
 4.12 Group IQ Packing - GIQP chunk 8
 4.13 Group Channel BandWidth - GCBW chunk 9
 4.14 Group Centre Frequencies - GCF_ chunk 9
 4.15 Start Of File Header - SOFH chunk 10

 4.16 END Of File Header - EOFH chunk 10
 4.17 TEXT string - TEXT chunk 10

5. PROPOSED EXTENSIONS 11
 5.1 UTF-8 string - UTF8 chunk 11
 5.2 IF frequency - IF__ chunk 11
 5.3 Proposed text chunks 11
 5.4 Direction data chunk 11

6. DEPRECATED CHUNK TYPES 12
 6.1 Start Of Header - SOF_ chunk 12
 6.2 End Of Header - EOH_ chunk 12

7. SYNCHRONISATION 13

Table of contents

Application Note

PXGF Data Format

 2

This is the functional specification of the PXGF
streaming and file format. The PXGF Streaming and
file format provides a framework for the streaming
and storage of sampled data along with the meta
data required to process the sampled data. It is a
streaming format in that synchronisation can be re-
gained if lost.

A file using the PXGF format contains a PXGF
stream with a prepended header. The header was
designed to allow an application to identify a file
without processing the file. The capability to identi-
fy files becomes more important as file sizes get
bigger. The PXGF file format supports large file si-
zes.

The PXGF format was designed to represent samp-
led data with additional information pertaining to
the way in which the data was sampled.

The PXGF format is loosely based on the Microsoft
RIFF file format. The RIFF format is based on the
concept of a chunk. Chunks are blocks that contain
specific application defined data. In the RIFF format
the complete file is a single RIFF chunk. RIFF chunks
and LIST chunks are currently the only two types of
chunks that may contain sub-chunks. All the remai-
ning chunks in the file are children of the global
RIFF chunk.

The RIFF format is unsuitable for our purposes for
two primary reasons
 The global RIFF chunk is limited in size to 4GB,

thereby effectively restricting the file size to
4GB.

 The RIFF format is unsuitable for streaming ap-
plications as one needs to read the whole file se-
quentially to be able to parse it. There is no Syn-
chronisation mechanism available.

For these reasons a new file and streaming format
was proposed and developed, namely the PXGF for-

1. INTRODUCTION

The PXGF format puts data into chunks. Different
types of chunks are defined to store different infor-
mation. The type of a chunk is specified by an int32
field in the chunk as shown in fig. A. An application
that requires data from a particular chunk will re-
gister to receive data from that type of chunk.

Chunks that are not recognised are simply skipped
over. The size field in the chunk allows unrecog-
nised chunks to be skipped over. Each chunk starts
with the sync number 0xa1b2c3d4.

Element Type Description

sync int32 Synchronisation number 0xa1b2c3d4

type int32 Derived from the chunk name, e.g. "SOFH"," EOFH", "SSIQ"

size int32 The number of data bytes in the remainder of the chunk. The value of size
must be a multiple of 4

data byte[size] The chunk data in a format specific to the type

2. THE PXGF CHUNK STRUCTURE

Fig. A Structure of PXGF chunks

Application Note

PXGF Data Format

 3

 The maximum amount of data in a chunk is li-
mited to 65536 bytes. This limits the separation
between sync patterns.

 The length of each chunk must contain an integ-
ral number of 32 bit words even though the size
element in the chunk header is specified as a
number of bytes.

 The PXGF format supports both little and big en-
dian byte ordering, although it may be necessa-
ry to provide the stream reader with the endian
used depending on its implementation. The en-
dian format for a file or stream may be deter-
mined by reading the sync pattern. It is not per-
missible to mix chunks of different endian for-
mat within a stream or file.

 When the PXGF format is used to store informa-
tion in a file, there must be a global header at

the beginning of the file to aid identification of
the file format and the data stored in the file.
This is necessary due to the potentially large size
of files.

 Nested sub-chunks are not supported as this
would unnecessarily complicate synchronisa-
tion.

 The implication of the previous point is that all
chunks are at root level and are interpreted enti-
rely sequentially. The parser must know which
chunks need to be identified before it can use
other chunks.

 The only constraint is that files must start with a
“SOFH chunk”. Due to the sequential nature of
parsing and the inability to nest chunks, a sepa-
rate global chunk is needed to identify the end
of the file header, namely the "EOFH" chunk.

3. APPLICATION NOTES

Fig. B Example chunk usage in a PXGF stream

PXGF chunk format, cross section of typical stream

Application Note

PXGF Data Format

 4

 The PXGF framework for streaming and storage
is designed to be extensible. Different applica-
tions require different information and if this in-
formation is not available in a stream, then that
application will not be able to process that
stream successfully. Just because an application
uses the PXGF format doesn't mean that it will
be able to process all PXGF streams or files. For
a particular project care should be taken to en-
sure that all necessary chunks are included.

 It is recommended that meta data like the
sample rate and packing description be sent
every second. This allows state information to
be recovered if synchronisation is lost and
makes it possible to process large files from the
middle of the file.

 Only data from one data source and of one for-
mat must be included in each stream or file.
Current formats include "SSIQ" for single chan-
nel data and "GSIQ" for multi-channel data. The
format used in files should be indicated using
the SOFH chunk. The format name may also be
used for the file extension to allow visual discri-
mination of different files.

 State information is accumulated by an applica-
tion by reading different chunks sequentially. If
synchronisation is lost, state information needs
to be reset. This is why it is essential to resend
meta data every second.

 It is necessary to be able to distinguish between
continuous data and block data where only part
of the time data is available. Data chunks con-
tain timestamps to enable detection of disconti-
nuities. A chunk has also been defined to indica-
te discontinuities in the time data, namely the
"IQDC" chunk.

 Playback control is essential for the off-line ana-
lysis of files, however due to the stream based
design of the PXGF format, playback control is
not easily supported. The PXGF format uses data
chunks supported by a number of meta chunks
that describe the state of the data stream.

 Before processing data chunks it is necessary to
obtain sufficient state information, like the
sample rate, by processing the necessary chunks
in the data stream.

 The use of an index file has been proposed as a
possible solution to the problem of playback
control. By reading an index file an application
could determine over what period the recording
was made and determine where to start proces-
sing the stream to play back a particular section.

 C++ and Java libraries have been developed for
the writing and reading of PXGF streams. The
libraries take care of synchronisation and for-
matting issues; they do not provide or dictate
the communication medium.

 The PXGF streaming format does not provide
any mechanism for communication between the
source of the data stream and the application
receiving the data stream. The PXGF stream
therefore represents a unidirectional flow of in-
formation from the source to the sink of the
stream.

 Applications that process PXGF input streams
should not make assumptions about the data.
For example, if the sample data were being sent
using the SSIQ chunk the application should wait
for a SIQP chunk to determine the packing of
the data rather than assuming a particular pa-
cking.

Fig. B is a graphical illustration showing how PXGF
chunks of different type are ordered in a stream/
file. Below are some notes to the developer to

keep in mind when using the PXGF format in an
application.

Application Note

PXGF Data Format

 5

4. DEFINITION OF CHUNKS

Element Type Description

ITimestamp int64 The timestamp is stored as a 64 bit signed number, representative of the
time of capture of the first sample in the chunk block, in microsecond reso-
lution. It is stored as the number of microseconds since beginning of the
epoch (i.e. 1st January 1970 midnight)

awlQData int16[length of IQ
data array]

IQ pairs of signed int16 short numbers. Note that regardless of the number
of valid bits, the most significant bits in each short should be used. This al-
lows us to specify the full-scale level without needing to specify the number
of bits

Fig. 3 The SR__ chunk

4.2 Singel channel IQ Packing - SIQP chunk

Element Type Description

ilslQPacked int32 Value 1 for IQ ordering and value 0 for Ql ordering. For example: a value of
1 will indicate that the first sample in the element awlQData of a SSIQ
chunk is an “I" sample

4.3 Sample Rate - SR__ chunk

Element Type Description

ISampleRate_uHz int64 The number of samples per second that are being recorded by this channel

Fig. 1 The SSIQ chunk

Fig. 2 The SIQP chunk

4.1 Single channel Short IQ time data - SSIQ chunk

Data is assumed to be continuous when using this data format, if the data is blocky, an IQDC chunk must be
sent after every block of continuous data.

The information in this chunk is required to parse the data in the SSIQ chunk.

Application Note

PXGF Data Format

 6

Fig. 4 The BW__ chunk

4.4 BandWidth - BW__ chunk

Element Type Description

IBandwidth_uHz int64 The bandwidth of the signal in micro Hertz

Element Type Description

IBandwidth_uHz int64 The bandwidth of the signal in micro Hertz

lOffsetFrequency _uHz int64 The offset frequency of the signal band from the centre frequency in micro
Hertz

4.5 BandWidth Offset Frequency - BWOF chunk

Fig. 5 The BWOF chunk

Element Type Description

ICentreFrequency_uHz int64 The tuned centre frequency of the signal in micro Hertz

4.6 Centre Frequency - CF__ chunk

Element Type Description

fFullScaleLevel_dBm float32 The analogue input level to the ADC in dBm, which will produce maxi-
mum full scale digital samples for the current IQ time data chunk integer
type. eg. If we are using SSIQ chunks, then a dBFS chunk will indicate the
analogue input level that will yield a maximum digital sample swing of +-
(215 -1). Note that this value may be different from the full scale value of
the ADC.

4.7 dB Full Scale - dBFS chunk

Fig. 6 The CF__ chunk

Fig. 7 The dBFS chunk

The bandwidth centred about the centre frequency. If the bandwidth is not centred about the centre fre-
quency use the BWOF chunk instead.

ln some cases the signal bandwidth will not be centred about the centre frequency. Such cases may occur
when demodulating SSB signals.

Application Note

PXGF Data Format

 7

Element Type Description

fGain_dB float32 The total analogue gain from the input of the receiver (usually an anten-
na) to the input of the ADC

4.8 dBTotal Gain - dBTG chunk

Fig. 8 The dBTG chunk

Fig. 9 The IQDC chunk

4.9 IQ DisContinuity - IQDC chunk

Element Type Description

N/A N/A N/A

This chunk should be sent as indicator to the rea-
ding application to reset it's history. Discontinuities
may be caused by samples being dropped, changes
in sample rate, changes in bandwidth, changes in
centre frequency or changes in receiver gain. In sys-
tems where continuous data is expected from a
stream an IQDC chunk should not be expected
unless a parameter change has forced a disconti-

nuity. In some applications it may be necessary to
send an IQDC chunk if the writing application
doesn't support the necessary chunk to identify an
obvious discontinuity, for instance if CF__ chunks
were not supported but it was known that the
centre frequency had changed an IQDC chunk
could be send.

Element Type Description

ITimestamp int64 The timestamp is stored as a 64 bit signed number, representative of the
time of capture of the first sample in the chunk block, in microsecond
resolution. It is stored as the number of microseconds since beginning of
the epoch (i.e. 1st January 1970 midnight)

awRealData int16[length of
real data array]
The length of the
array must be a
multiple of 2

Real signed int16 short numbers. Note that regardless of the number of
valid bits, the most significant bits in each short should be used. This al-
lows us to specify the full-scale level without needing to specify the num-
ber of bits. The number of real int16 shorts in the array must be a multip-
le of 2

4.10 Single channel Short Real data - SSR_ chunk

Fig. 10 The SSR_ chunk

Data is assumed to be continuous when using this data format, if the data is blocky, an IQDC chunk should
be sent after every block of continuous data. This chunk can be used to send audio data.

Application Note

PXGF Data Format

 8

Element Type Description

ITimestamp int64 The timestamp of the first sample in microsecond resolution, this is
the number of microseconds since beginning of the epoch

awlQData int16[length of the
group IQ data array]

IQ pairs of signed int16 short numbers. Note that regardless of the
number of valid bits, the most significant bits in each short should be
used. This allows us to specify the full-scale level without needing to
specify the number of bits. The packing used is described by the GIQP
chunk

4.11 Group Short IQ time data - GSIQ chunk

Fig. 12 The GIQP chunk

Element Type Description

iNumChannels int32 The number of channels in the group

ilslQPacked int32 Value 1 for IQ ordering and value 0 for Ql ordering. The first int 16 in
the awlQData array mentioned above is an “I” sample if the value is 1

ilncrement int32 The number of samples to increment to read the next sample for a
particular channel. The value of ilncrement will be 1 or iNumChannels

aiChannelOffset int32 [iNumChannels] The channel offset to the start of each channel given in samples whe-
re a sample is an IQ pair

4.12 Group IQ Packing - GIQP chunk

Fig. 11 The GSIQ chunk

The Group IQ chunk came out of the need to send
multiple channels worth of time data sampled from
several adjacent channels in the frequency domain.
These channels are often slightly overlapped in the
frequency domain and can be used to create FFT

information of a wider bandwidth than what is con-
tained in a single channel. Data is assumed to be
continuous when using this data format, if the data
is blocky, an IQDC chunk should be sent after every
block of continuous data.

Since the GSIQ chunk supports many variations in contents, the content specific information is supplied by
the GIQP chunk, and is required to parse the chunk correctly.

Application Note

PXGF Data Format

 9

Element Type Description

iChannelBandwidth_uHz int64 The bandwidth of each channel contained in a GSIQ chunk. Value
stored in micro Hertz. It is assumed that all of the channels are
sampled at the same sample rate, and therefore the bandwidth
of all channels in the group is equal

4.13 Group Channel BandWidth - GCBW chunk

Fig. 13 The GCBW chunk

Element Type Description

iNumChannels int32 The number of channels in the group

alCentreFrequencies_uHz int64 [iNumChannels] The centre frequency of each channel in micro Hertz

4.14 Group Centre Frequencies - GCF_ chunk

Fig. 14 The GCF_ chunk

Group IQ Packing - GIQP Examples

Take a stream which contains 4 channels of IQ data A,B,C and D. If the data were packed as follows
(where N = number of samples per channel):

 A[0] A[1] A[2] ... A[N-1] B[0] B[1] B[2]... B[N-1] C[0] C[1] C[2] ... C[N-1] D[0] D[1] D[2]... D[N-1]

For this packing scheme: ilncrement = 1 and aiChannelOffset = [0 N 2N 3N]

 A[0] A[1] A[2]... A[N-1] B[0] B[1] B[2]... B[N-1] D[0] D[1] D[2]... D[N-1] C[0] C[1] C[2]... C[N-1]

For this packing scheme: ilncrement = 1 and aiChannelOffset = [0 N 3N 2N]

 A[0] B[0] C[0] D[0] A[1] B[1] C[1] D[1] A[2] B[2] C[2] D[2] ... A[N-1] B[N-1] C[N-1] D[N-1]

For this packing scheme: ilncrement = 4 and aiChannelOffset = [0 1 2 3]

Application Note

PXGF Data Format

 10

Fig. 15 The SOFH chunk

4.15 Start Of File Header - SOFH chunk

Element Type Description

iFormat int32 Identifier for the format used in a file. It is recommended that the numeric
value of the data chunk name used in the file be used for this, e.g. SSIQ or
GSIQ

All files must be started with an instance of the
SOFH chunk. The presence of this chunk can be
used to identify the file format as a PXGF file. For
more information about what type of data is

stored, the remaining chunks before the EOFH
chunk should be evaluated. This chunk must only
appear once at the start of a file.

Fig. 16 The EOFH chunk

4.16 End Of File Header - EOFH chunk

Element Type Description

This chunk must contain an empty data block, i.e. the size must be 0. It is used to indicate the end of the
header at the start of a file.

Fig. 17 The TEXT chunk

4.17 TEXT string - TEXT chunk

Element Type Description

iTextLength int32 The number of characters in the text message

ayMessage byte[iTextLength] Text encoded using ISO-8859-1

 byte[] Zero padding to ensure word alignment of chunk

Text chunk using ISO-8859-1 encoding. Each charac-
ter is stored as a byte. This chunk can be used to
store meta data. It is suggested that this informa-
tion appear in the header section of files. Text

chunks with different names could be created or
meta data could be encoded in a single text chunk
using XML. See section 5.3 for a list of proposed
text chunks.

Application Note

PXGF Data Format

 11

5. PROPOSED EXTENSIONS

Fig. 20 Proposed UTF8 chunk

5.1 UTF-8 string - UTF8 chunk

Element Type Description

ayUTF8 byte[] Text encoded using UTF-8. The byte array is to be padded to ensure word
alignment

Text chunk using UTF-8 encoding. It may be desirable to be able to store text messages using different for-
mats, eg UTF-8 etc.

Fig. 21 Proposed IF__ chunk

5.2 IF frequency - IF__ chunk

Element Type Description

IIfFrequency_uHz int64 The IF frequency of the signal in micro Hertz

Some systems require data to be played back at the
original IF frequency used by the receiver. As the
sampled data is already at baseband the IF fre-
quency doesn't provide any information about the
signal useful for analysis. This chunk could also cau-

se confusion if the data were not at baseband, but
rather offset to some frequency as occurs when u-
sing some demodulators in SSB mode. This special
case is currently dealt with using the BWOF chunk.

 Timestamp for start of first sample

 Frequency of the first bin

 Bin resolution

 Number of bins

 Azimuth/Elevation pairs encoded as shorts

 Location of recording - TLOC

 Equipment used to generate file - TREQ

 Name of operator - TNOP

5.4 Direction data chunk

5.3 Proposed text chunks

Application Note

PXGF Data Format

 12

Fig. 20 Deprecated SOF_ chunk

6.1 Start Of Header - SOF_ chunk (Use SOFH chunk instead)

Element Type Description

iFormat int32 Identifier for the format used in a file. It is recommended that the numeric
value of the data chunk name used in the file be used for this, e.g. SSIQ or
GSIQ

Fig. 20 Deprecated EOH_ chunk

6.2 End Of Header - EOH_ chunk (Use EOFH chunk instead)

Element Type Description

Used to denote the start of the header in a PXGF
file. The presence of this chunk can be used to
identify the file format as a PXGF file. For more in-
formation about what type of data is stored, the

remaining chunks before the EOH_ chunk should
be evaluated. This chunk uses the same chunk type
number as the SOFH chunk that replaces it.

This chunk must contain an empty data block, i.e. the
size must be 0. It is used to indicate the end of the

header at the start of a file. This chunk uses the same
chunk type number as the EOFH chunk.

6. DEPRECATED CHUNK TYPES

Application Note

PXGF Data Format

 13

7. SYNCHRONISATION

If an application is reading a file from the beginning
there will be no trouble synchronising unless the
file has become corrupted. However, if the applica-
tion is connecting to an output stream in this for-
mat which has been running since prior to the

connection, then it is necessary to ensure that the
application becomes synchronised with the stream.
Synchronisation is largely hidden from the develo-
per as it is handled by the libraries for reading and
writing PXGF streams.

Step 1 Obtain synchronisation

 Read the stream until the 4 byte sync pattern is recognised

 Reset state information in the application

 Move on to step 2

Step 2 Attempt to process a chunk

 Read the type and length of the chunk

 If the length is more than 65536 bytes return to step 1

 If there is a registered handler for the type then process it otherwise skip over the data

of the chunk

 Move on to step 3

 Step 3 Check synchronisation

 Read the sync pattern from the stream. If sync pattern matches move to step 2

 otherwise move back to step 1

The procedure to obtain synchronisation is as follows

Application Note

PXGF Data Format

 14

Since more than thirty years Wavecom Elektronik
AG has developed, manufactured and distributed
high quality devices and software for the decoding
and retrieval of information from wireless data
communication in all frequency bands. The nature

of the data communication may be arbitrary, but
commonly contains text, images and voice. The
company is internationally established within this
industry and maintains a longstanding, world-wide
network of distributors and business partners.

WAVECOM ELEKTRONIK AG
8090 Zurich, Switzerland
E-Mail: sales@wavecom.ch
Internet: www.wavecom.ch

Application Note

PXGF Data Format

© WAVECOM ELEKTRONIK AG 2025 - All rights reserved
Microsoft, Encarta, MSN and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
RIFF® is a device control interface from Microsoft Windows system. All rights of PXGF® is reserved by GEW Grintek Ewation Pty Ltd., R.S.A.

 Minimum Recommended

CPU Core i5 or Core i7 2.8 GHz Core i7-6700 3.4 GHz

Memory 4 - 8 GB RAM 16 - 32 GB RAM

OS Windows 7 Windows 10 32-bit or 64-bit

Products http://www.wavecom.ch/product-summary.php

Datasheets http://www.wavecom.ch/brochures.php

Specifications http://www.wavecom.ch/product-specifications.php

Documentation http://www.wavecom.ch/manuals.php

Online help http://www.wavecom.ch/content/ext/DecoderOnlineHelp/default.htm

Software warranty One year free releases and bug fixes, update by DVD

Hardware warranty Two years hardware warranty

Prices http://www.wavecom.ch/contact-us.php

Product Information

System Requirements

Distributors and Regional Contacts

You will find a list of distributors and regional contacts at http://www.wavecom.ch/distributors.php

http://www.wavecom.ch/product-summary.php
http://www.wavecom.ch/brochures.php
http://www.wavecom.ch/product-specifications.php
http://www.wavecom.ch/manuals.php
http://www.wavecom.ch/content/ext/decoder-online-help/default.htm
http://www.wavecom.ch/contact-us.php
http://www.wavecom.ch/distributors.php

